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Response to Carl Schwarz

J. A. DUPUIS, Laboratoire de Statistique et ProbabiliteÂ s, University Paul Sabatier,

France

I would like to thank Carl Schwarz for his thoughtful comments as well as for his

stimulating questions.

Question 1

We think that the state-space formulation (suggested by Schwarz) is not appropriate

to describe the missing data phenomenon inherent in multi-strata capture- recapture

data. Contrary to the state-space models the observation process (that corresponds

to the capture process in our paper) has no observation error. When animal i has

been captured at time t, its position (and thus the observation) is known without

error; but there is no observation error when animal i has not been captured at

time t. Its position is simply not available from the data, and it is simply missing.

Finally, we think that the Arnason- Schwarz model is typically a missing data

model, in the same way as the mixture models or the hidden Markov chains

models.

Question 2

As pointed out by Schwarz, problems of non-identi® ability are crucial for frequentist

statisticians. From a Bayesian point of view, non-identi® able parameters can be

estimated, provided the posterior distribution exists. This interesting characteristic

has been stressed by Brooks et al. (2000) when analysing, from a Bayesian point

of view, a ring-recovery data set, for which the likelihood has a completely ¯ at

ridge. In that situation, there is no unique MLE, whereas the Bayesian estimate

exists and is remarkably precise.
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Table 1

u 1 u 2 p2 p3

mean 0.53 0.67 0.39 0.67

SD 0.09 0.17 0.07 0.17

Table 2

c (1, 1) c (2, 2) p(1) p(2)

mean 0.598 0.786 0.500 0.749

SD 0.035 0.064 0.039 0.042

Schwarz suggests that Bayes estimates could be used, ® rstly, to understand how

information contained in the data is parcelled between two (or more) non-

identi® able parameters and, secondly, to diagnose which parameters are identi® able

and which parameters are not. To my knowledge, no work has been devoted to

investigating such issues. To examine those questions we consider two models for

which some parameters are not identi® able: the ® rst one is the CJS (Cormack-

Jolly- Seber) model, and the second one is the ASh (time-homogeneous closed

Arnason- Schwarz) model. For each of these two models we calculate the Bayesian

estimates of non-identi® able parameters (uniform prior having been put on all the

parameters).

We ® rst consider a data set that is constructed as in Section 6 of our paper. The

experimental protocol includes T 5 3 capture- recapture sessions (including the

tagging session); tagging has been carried out only at time t 5 1. The model is

parameterized by h 5 ( u 1 , p2 , u 2 , p3 ). Expected counts are calculated under the CJS

model, and for a ® xed value h * of h . For h * 5 (0.5, 0.4, 0.75, 0.6) and n 5 200, it

is easy to check that the counts are for each history: 111(18), 101(27), 110(22),

100(133). It is well known that u 2 and p3 are not identi® able whereas the product

b 3 5 u 2p3 is identi® able. We denote by h Ã the Bayesian estimate of h . Table 1 provides

the posterior means and the posterior standard deviations (SDs) of the parameters.

We now construct a data set under the ASh model. The study zone K includes

two strata 1 and 2, and the experimental protocol includes T 5 3 capture- recapture

sessions (including the tagging session); tagging is carried out only at time t 5 1,

and only in stratum 1. The ASh model is parameterized by h 5 (c (1, 1), c(2, 2),

p(1), p(2)). Expected counts are calculated under the AS model, and for a ® xed

value h * of h . For h * 5 (0.6, 0.8, 0.5, 0.75) and n 5 200, it is easy to check that the

counts are for each history: 122(36), 121(6), 120(18), 111(18), 112(18), 110(24),

101(20), 102(30), 100(30). Table 2 provides the posterior means and the posterior

standard deviations (SDs) of the parameters.

We now examine the identi® ability of the ASh model. Let h 5 (c (1, 1), c(2, 2),

p(1), p(2)) and h ¢ 5 (c ¢ (1, 1), c ¢ (2, 2), p ¢ (1), p ¢ (2)) so that:

c (1, 1)p(1) 5 c ¢ (1, 1)p ¢ (1) c (2, 2)p(2) 5 c ¢ (2, 2)p ¢ (2)

and c (1, 1) + c (2, 2) 5 c ¢ (1, 1) + c ¢ (2, 2) 5 1. It is easy to check (Dupuis, 2001),

that for all data sets y, we have L( h ½ y) 5 L( h ¢ ½ y). Therefore the ASh model is not

identi® able. Note that c (1, 1) + c(2, 2) ¹ 1 is satis® ed if and only if the movement

process is Markovian, in the strict sense (that is, if we have c (1, 1) ¹ c (2, 1)).
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In the ® rst example (associated with the CJS model), Bayesian estimates of the

identi® able parameters (i.e. of u 1 and p2 ) are satisfactory. By comparison, u Ã 2 and

pÃ 3 are clearly erroneous. Note that u Ã 2 5 pÃ 3 . This is not surprising, since u 2 and p3

appear in the likelihood only through the product u 2 p3 . Note also that

u Ã 2 pÃ 3 5 0.672 0.45 is very close to b *3 5 0.45. The Bayesian estimates of u 2 and p3

are therefore illusory since they do not provide information on the value of each

parameter separately. The only information provided by u Ã 2 and pÃ 3 is related to the

product u 2 p3 . Nevertheless, if some prior information is available on u 1 , p2 and

p3 , the parameterization h 5 ( u 1 , p2 , u 1 , p3 ) can be relevant. In our example, if

u 1 ~ V e(10, 10); p2 ~ V e(8, 12); and p3 ~ V e(12, 8), we obtain u Ã 2 5 0.74 with a

posterior SD equal to 0.12.

In the second example, all the Bayesian estimates are precise, unlike the ® rst

example. This is not surprising, since h is identi® able if and only if c (1, 1) ¹ c (2, 1),

and we have chosen h * such as c*(1, 1) ¹ c*(2, 1). When the data set is constructed

under the ASh model with c*(1, 1) 5 c*(2, 1), the Bayesian estimate of h is

completely erroneous. For example, for h * 5 (0.2, 0.8, 0.5, 0.75) and n 5 500, we

have obtained h Ã 5 (0.40, 0.60, 0.26, 0.99) and 0.02, 0.028, 0.022 and 0.0010, for

the respective posterior SDs. From those results, we can observe a phenomenon

similar to the one observed with the CJS model: c(1Ã , 1) p(Ã 1) is very close to

c (1, 1) p(1) (idem for c (2Ã , 2) p(Ã 2) and c (2, 2) p(2)).

Results associated with these two examples (as well as some additional analyses

not reported here) seem to indicate that Bayesian estimates of non-identi® able

parameters can have abnormally large posterior SD (but not necessarily, see the

second example), and are generally very sensitive to the prior. Moreover, we have

observed that the presence of non-identi® able parameters can reduce the speed of

convergence of the Gibbs sampling. Results associated with these two examples

also suggest the following procedure to detect non-identi® able parameters in

capture- recapture models. Under the considered model assumed to be para-

meterized by h 5 ( h j ; j 5 1, . . . , J ), construct a data set based upon the expected

counts from a large sample (expected counts being calculated for a ® xed value h *

of h ). The abnormal distance between h *j and its non-informative Bayesian estimate

h Ã j should indicate that h j is not identi® able.

Question 3

The question of Schwarz leads us to provide some additional information con-

cerning the construction of a prior distribution on a multi-dimensional parameter

h 5 ( h j ; j 5 1, . . . , J} where J > 3, h j Î ]0, 1[ and R J
j 5 1 h j 5 1. This context concerns

the incorporation of some prior information on movement parameters when the

study zone has been divided in three zones (or more). In our paper, we have

advocated the use of a Dirichlet distribution when the prior information consists

of a prior mean l j for each component h j and of a 95% prior credible interval I for

one of the components of the vector h . When the prior information consists of a

prior mean l j for each component h j and of a prior credible interval I j for each

component h j , the Dirichlet distribution is clearly not able to incorporate such a

prior. In that case, we advocate the following conservative attitude (suggested by

Schwarz). Search k j so that Pr( h j Î I j) 5 0.95 assuming that h j ~ V e( k j l j , k j(1 2 l j).

Then take k 5 infj k j , accepting a certain loss of precision of the prior information.

Finally h ~ X (a1 , . . . , a j , . . . , a j) where a j 5 k l j .
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Question 4

The data set is the one considered in Section 6.1. Moreover, as in Section 6, we

only focus on the parameter c 1(2, 1). Unless otherwise speci® ed, we have put a

uniform prior distribution on all the parameters.

The MLE of c 1(2, 1) given by MARK (that is, 0.56), is very close to the non-

informative Bayesian estimation (that is, 0.57). When we compare the frequentist

CI yielded by MARK and the Bayesian CI, the comparison clearly shows the

advantage of the Bayesian CI (see Section 6.1). It is not due to some additional

information incorporated via the prior (as suggested by Schwarz), since a uniform

prior distribution has been put on c 1(2, 1). Actually, I think that the frequentist CI

yielded by MARK is so wide because its construction relies on assumptions of

asymptotic normality (which requires the size n of the sample to be large), whereas

in our example n is relatively small (since n 5 40). The Bayesian CI we provide is

exact.

Schwarz suggests that the formula (4), that is

h Ã p 5
n

k + n
h Ã ml +

k

k + n
[ h ]

could be used to indicate the (relative) amount of information in the posterior

from each source. Unfortunately, in the AS model, this formula does not apply to

c t(r, s), except if the locations between times t and t + 1 have been all observed. If ,

for example c 1(2, 1) ~ V e(0.7, 10), we have [c 1(2, 1) ½ y] 5 0.66 (see Table 1 in

our paper), whereas 0.8 3 0.56 + 0.2 3 0.7 5 0.588. Nevertheless, it is possible to

search for the weights p1 and p2 5 1 2 p1 , such as h Ã p 5 p1h
Ã

ml + p2 [ h ], where, for

convenience, c 1(2, 1) has been denoted by h , which yields p1 0.3 and p2 0.7.

The weight p1 can be interpreted as the (relative) amount of information provided

by the data, and the weight p2 as the (relative) amount of information provided by

the prior information. It is of interest to compare p1 5 0.3 with n /( k + n) 5 0.8.

Note that n /( k + n) can be interpreted as the relative amount of information about

the parameter c 1(2, 1), provided by a (virtual) data set of size n 5 40 in which all

the transitions starting from 1 at time t 5 1 would have been all observed.
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